Exam 1 Review

CH 301N

Today's Agenda

- About the exam
- Content
- Matter
- Stoichiometry
- Limiting reactant
- Gases
- Air
- Stuff to memorize
- Q\&A

The exam...

- Tomorrow
- 2:00-3:15 in classroom
- 20 multiple choice
questions
- Paper exam
- QR code at the end
- This is where you will submit your
answers!!!

Things you will be given

- The exam (yay!)
- QR code for the bubble sheet
- Scratch paper if needed
- Periodic table and conversion sheet

What to bring

ChemBook Chapters:

Chapter 0: Stuff You Already Know
Chapter 1: Fundamentals of Chemistry
Chapter 2: Atmosphere, Air, and Gases

Learning Outcomes

What to study: LO's, HW's, chembook, class notes

Students will know...

1. how to count stuff
2. how to mathematically convert from one type of unit to another utilizing a set of conversion factors
3. the names, formulas, and physical state of the first 10 alkanes
4. Know which elements exist as diatomic molecules
5. the MAIN Metric Prefixes for Chemistry Class as listed in section 10.2 of chembook - it's the last table there
6. how to fully balance a chemical reaction and identify the coefficients
7. how to do composition stoichiometry calculations - figuring out the percent of a specific element in a given compound
8. how to do reaction stoichiometry calculations converting moles to moles and also moles to grams and grams to grams or anything else
9. how to predict product amounts when given arbitrary amounts of reactants - limiting reactant problems (like \#20 on HWO1)
10. the same outcomes as the two previous ones but with gas moles using the ideal gas law to get pressure or volume of the gas reactants.
11. the 3 primary components and their percentages of dry air
12. how those percentages change when humid air is used
13. the 6 primary pollutants in our air - know names and formulas and/or abbreviations for them
14. the primary sources/causes of those pollutants
15. what methods are in place to help curb the amounts of these pollutants in air
16. how to calculate various gas law values - P, V, T, and n according to the ideal gas law and associated laws
17. how to convert pressure of a gas into number (mole) density
18. what partial pressure is and how to calculate it.
19. how to get mole fraction from partial pressure and total pressure and vice versa
20. how to use the pressure and identity of a gas to calculate its mass density
21. how to convert mass density and pressure into the molecular weight of a gas
22. anything else we learned and did in class, on HW, that I forgot here

0 Stuff You Already Know	1 Fundamentals of Chemistry	2 Atmosphere, Air, and Gases
0.1 I Can Count	1.1 Matter - Breakdown	2.1 Composition of Air
0.2 Big/Small - Hot/Cold	1.2 Molecules	2.2 What Makes a Gas... different?
0.3 Looking Stuff Up	1.3 Measurements	2.3 Our Atmosphere
0.4 Using a Calculator	1.4 Significant Figures	2.4 What is Pressure?
0.5 Basic Math/Algebra	1.5 Periodic Table	2.5 Gas Laws
0.6 The Art of Reasonableness	1.6 Conversions	2.6 Partial Pressure
0.7 Which Pill? Red or Blue	1.7 Solutions and their Concentrations	2.7 Reaction Stoichiometry and Gases
0.42 Learning Outcomes	1.8 Definition of a Mole	2.8 Air Pressure and Elevation
	1.9 Calculating Moles	2.9 Pollutants in Air
	1.10 Stoichiometry	2.10 Curbing Air Pollutants
	1.11 Limiting Reactant	2.11 Al Kane
	1.12 Common Diatomic Elements	2.12 Density of a Gas
	1.13 Chemical Formulas	2.13 STP and more
	1.14 Nomenclature	
	1.42 Learning Outcomes	

Ready to get started???

Matter

Pure Substances

- Elements: on periodic table
- Compounds:

Chemically combined elements (chemical formulas) $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Mixtures

- Homogenous: same throughout (solutions)
- Heterogenous: obvious differences

Phases of Matter

IMF s hold molecules together

* intermdecular condensed phases forces

not touching" relatively far away from each other 10 or more
diameters'

Stoichiometry (ratios)

Example: Propane

Calculating molar mass
$\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow 3 \mathrm{C}: 3 \times 12=36 \mathrm{~g} / \mathrm{mol}$
$8 \mathrm{H}: 8 \times 1=8 \mathrm{~g} / \mathrm{mol}$
$\sim 44 \mathrm{~g} / \mathrm{mol}$

Percent mass

$36 / 44=82 \%$ C
8/44 (or 100-82) $=18 \% \mathrm{H}$

Don't be like him
${ }_{-} \mathrm{Al}+{ }_{-} \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ Al $_{2}\left(\mathrm{SO}_{4}\right)_{3}+{ }_{-} \mathrm{H}_{2}$
$2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}$

Limiting
 Reactant

Bun

LIMITING REAGENT

Hot dog in bun

Now with chemistry :)

$3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$

I give you 2 moles of H_{2} and 5 moles of N_{2}
What's the limiting reactant???

$3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$

Given: 2 moles H_{2} and 5 moles N_{2}
Option 1: Convert one reactant to the other reactant to see which one is limiting

$3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$

Given: 2 moles H_{2} and 5 moles N_{2}

Option 1: Convert one reactant to the other reactant to see which one is limiting

Option 2: Convert both reactants to moles of product and see which makes less

$3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$

Given: 2 moles H_{2} and 5 moles N_{2}

Option 1: Convert one reactant to the other reactant to see which one is limiting

Option 2: Convert both reactants to moles of product and see which makes less

Some people prefer one way over another, but EITHER WAY IS FINE!!!

$3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$

Given: 2 moles H_{2} and 5 moles N_{2}

Option 1: Convert one reactant to the other reactant to see which one is limiting

Option 2: Convert both reactants to moles of product and see which makes less

```
\(5 \mathrm{~mol} \mathrm{~N}_{2} \times\left(3 \mathrm{~mol} \mathrm{H}_{2} / 1 \mathrm{~mol} \mathrm{~N}_{2}\right)\)
    \(=15 \mathrm{~mol} \mathrm{H}_{2}\) NEEDED for the reaction to
        run to completion
```

You only HAVE 2 moles. You do not have enough H_{2}, so it is your LR.

$3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$

Given: 2 moles H_{2} and 5 moles N_{2}

Option 1: Convert one reactant to the other reactant to see which one is limiting

$$
\begin{aligned}
& 5 \mathrm{~mol} \mathrm{~N}_{2} \times\left(3 \mathrm{~mol} \mathrm{H}_{2} / 1 \mathrm{~mol} \mathrm{~N}_{2}\right) \\
& =15 \mathrm{~mol} \mathrm{H}_{2} \text { NEEDED for the reaction to } \\
& \text { run to completion }
\end{aligned}
$$

Option 2: Convert both reactants to moles of product and see which makes less

$$
\begin{gathered}
2 \mathrm{~mol} \mathrm{H}_{2} \times\left(2 \mathrm{~mol} \mathrm{NH}_{3} / 3 \mathrm{~mol} \mathrm{~N}_{2}\right) \\
=\underline{1.33} \mathrm{~mol} \mathrm{NH}_{3} \text { made } \\
5 \mathrm{~mol} \mathrm{~N}_{2} \times\left(2 \mathrm{~mol} \mathrm{NH}_{3} / 1 \mathrm{~mol}_{2}\right) \\
\quad=\underline{10} \mathrm{~mol} \mathrm{NH}_{3} \text { made }
\end{gathered}
$$

You only HAVE 2 moles. You do not have enough H_{2}, so it is your LR.

Because you made less NH_{3} with your H_{2}, that is your limiting reactant!

Be sure you can work these problems both ways!! (i.e. going from pdt \rightarrow rct)

Questions so far?

Gases

Charles' Law

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

constant n, P

Avogadro's Law

$$
\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}
$$

constant P, T

Ideal Gas Law

$$
P V=n P T
$$

Combined Gas Law

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

constant n

Inflate a Tire* Law

$$
\frac{P_{1}}{n_{1}}=\frac{P_{2}}{n_{2}}
$$

* constant V, T named by dr mccord

Gay-Lussac's Law

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

constant n, V

Ideal Gas Law (rearranged)

$$
\frac{P V}{n T}=R
$$

*equation of state

Nobody Does This* Law

$$
n_{1} T_{1}=n_{2} T_{2}
$$

*constant P, V named by dr mccord

MEMORIZE THIS!!

Units matter!

P: atm, kPa, bar, torr, psi, ...
$\mathrm{V}: \mathrm{L}, \mathrm{mL}, \ldots$

N: MOLES (don't accidentally plug in grams when you need moles!)

T: KELVIN! (don't use ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ in calculations)

[^0]
Units matter!

P: atm, kPa, bar, torr, psi, ...
$\mathrm{V}: \mathrm{L}, \mathrm{mL}, \ldots$

N: MOLES (don't accidentally plug in grams!)

T: KELVIN! (don't use ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ in calculations)

Common R Values

$R=0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K}$
$R=0.08314 \mathrm{~L} \mathrm{bar} / \mathrm{mol} \mathrm{K}$
$R=62.36 \mathrm{~L}$ torr $/ \mathrm{mol} \mathrm{K}$

$R=8.314 \mathrm{~m}^{3} \mathrm{~Pa} / \mathrm{mol} \mathrm{K}$
*all these values will be given on exams

We could say these in a problem...

STP	SATP
1 atm	1 bar
273.15 K	298.15 K

We could say these in a problem...

STP	SATP
1 atm	1 bar
273.15 K	298.15 K

Like...
You have 2L of an ideal gas at STP. How many moles?

We could say these in a problem...

STP	SATP
1 atm	1 bar
273.15 K	298.15 K

Like...

You have 2L of an ideal gas at STP. How many moles?

$$
\begin{aligned}
& P V=n R T \\
& \begin{aligned}
\mathrm{n}=\mathrm{PV} / \mathrm{RT} & =(1 \mathrm{~atm})(2 \mathrm{~L}) /(0.08206 \mathrm{~L} \text { atm } / \mathrm{mol} \mathrm{~K})(273.15 \mathrm{~K}) \\
& =0.089 \text { moles }
\end{aligned}
\end{aligned}
$$

Dalton's Law of Partial Pressures

$$
P_{\text {total }}=P_{A}+P_{B}+P_{C} \cdots
$$

Each gas in your container contributes to the overall pressure

Mole Fraction

$$
X_{\mathrm{A}}=\frac{P_{\mathrm{A}}}{P_{\text {total }}}
$$

$$
X_{A}=\frac{\text { moles of } A}{\text { total moles }}
$$

$$
P_{\mathrm{A}}=\mathrm{X}_{\mathrm{A}} \cdot P_{\text {total }}
$$

Questions?

Air

... and other stuff to basically memorize

Components of Dry Air

$78 \% \mathrm{~N}_{2}$
$21 \% \mathrm{O}_{2}$
1\% Ar

Humid air has water vapor $-\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Major Components in Dry Air [vol\%]

The Engineering ToolBox
wave EngineeringToolBox.com

Pollutants - Chembook 2.9 \& 2.10

$\mathrm{CO}, \mathrm{NO}_{\mathrm{x}}, \mathrm{SO}_{\mathrm{x}}, \mathrm{VOCs}, \mathrm{PM}, \mathrm{O}_{3}$
Know:

- Names
- Formulas / abbreviations
- Sources / causes
- A little about them - chembook
- Methods in place to curb these pollutants
- Catalytic converters remove VOCs, CO, NOx \& requires $\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$
- Scrubbers remove $\mathrm{SO}_{x} \rightarrow$ gypsum, $\mathrm{CaSO}_{4}{ }^{*} 2 \mathrm{H}_{2} \mathrm{O}$

Alkanes

name	formula	state $\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$
methane	CH_{4}	gas
ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	gas
propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	gas
butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	gas
pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	liquid
hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	liquid
heptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	liquid
octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	liquid
nonane	$\mathrm{C}_{9} \mathrm{H}_{20}$	liquid
decane	$\mathrm{C}_{10} \mathrm{H}_{22}$	liquid

We made it!

Questions??

You've got this!

Get some sleep!
 Hydrate \& eat a good meal!

 Don't overthink!
[^0]: Common R Values
 $R=0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K}$
 $R=0.08314 \mathrm{~L} \mathrm{bar} / \mathrm{mol} \mathrm{K}$
 $R=62.36 \mathrm{~L}$ torr $/ \mathrm{mol} \mathrm{K}$
 $R=8.314 \mathrm{~m}^{3} \mathrm{~Pa} / \mathrm{mol} \mathrm{K}$
 *all these values will be given on exams

